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Abstract. The following is a list of problems with substantial hints and
brief discussions, related to the topics of my talk at LSGNT on January
2022. The focus is on elementary properties of solutions both in 1D and
higher dimensions, as well as min-max and other methods for constructing
solutions.

1. Notation for hypersurfaces

Definition 1.1. Given Σ ⊂ M , we denote by |Σ|:= Hn−1(Σ) the (n − 1)-
dimensional Hausdorff measure of the set Σ, i.e. |Σ|= Area(Σ), for Σ = Σn−1 a
smooth embedded hypersurface.

Definition 1.2. Let Σ ⊂ M be an embedded smooth hypersurface. We say
that Σ is separating iff M \Σ is the union of two open regions M1 and M2 (not
necessarily connected) and such that Σ = ∂M1 = ∂M2.

Example 1.3. The union of k disjoint slices (copies of Tn−1) of a torus Tn form
a separating hypersurface iff k is even. RP2 ⊂ RP3 is not separating. Indeed,
since we are assuming M is orientable, then Σ cannot be separating whenever
one of its connected components is non-orientable.

Definition 1.4. We say that an embedded minimal hypersurface Σ0 (possibly

unorientable) is non-degenerate iff d2

dt2
Area(Σt)|t=0 6= 0, for all smooth variations

Σ0, such that d
dtΣt|t=0 is normal to Σt and not identically zero. If in addition,

d2

dt2
Area(Σt)|t=0≥ 0 for every variation, we say that Σ is stable (or strictly stable

if the inequality is strict).

Remark. Let Σ be an orientable minimal hypersurface and ∂ a continuous

choice of a normal vector. If d
dtΣt|t=0= f∂, for f ∈ C∞(Σ), then d2

dt2
Area(Σt)|t=0=

−
∫
M fJ(f), where J = ∆Σ + |A0|2+ RicM (∂, ∂) is the Jacobi operator of Σ

and A0 is the second fundamental form of Σ (see [4]). In this case, we denote by
Ind(Σ) the number of negative eigenvalues of −J (counted with multiplicity).

2. The Allen-Cahn equation

Let Ω ⊂ Mn be a region with smooth boundary, of an n-dimensional Rie-
mannian manifold). Given ε > 0, we refer to the semilinear elliptic equation

ε2∆u−W ′(u) = 0,(1)
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where u : Ω→ R is a C2(Ω) function and W (u) = (1−u2)2/4, as the Allen-Cahn
equation.

Notice that the constants ±1 and 0 satisfy (1). We refer to these as trivial
solutions of (1). A simple computation shows that (1) is the Euler-Lagrange
equation of the energy

Eε(u) =

∫
M
ε
|∇u|2

2
+
W (u)

ε
(2)

as a functional on the Sobolev space W 1,2(M), i.e. u solves (1) iff it is a critical
point of Eε.

Definition 2.1. If u solves (1), we denote by Ind(u) the number of negative
eigenvalues of the linearized operator −Lu where Lu = ε2∆−W ′′(u). Notice
that E′′ε (u)(φ, φ) = −

∫
M φLuφ.

Exercise 1 (ε-scaling). If u satisfies (1) on (M, g), then u satisfies (1) with
ε = 1 on the rescaled metric (M, ε−2g).

Exercise 2 (±1 are the solution with lowest energy). Show that ±1 are the
only global minimizers and Eε(±1) = 0.

Exercise 3 (0 is the solution with highest energy). Show that if u is any non
zero solution of (1) (not necessarily trivial) then Eε(u) < Eε(0).

Hint: integrate by parts in (2), substitute ε2∆u = u3 − u and simplify.

3. One-dimensional solutions

In this section we study the ODE u′′ −W ′(u) = 0, for u : I → R where
I ⊂ R is an open interval and W ′(u) = u3 − u. Solutions to this autonomous
semilinear equation, can be classified (up to translations and reflections) in
terms of their discrepancy ξ = (u′)2/2−W (u), where W (u) = (1− u2)2/4.

Exercise 4. d
dtξ(t) = 0, for t ∈ I. In other words, ξ is constant. On a phase

diagram u× u′, draw the curves corresponding to solutions of (1) for different
values of ξ.

3.1. Strictly Monotone Solutions. In a region where a solution is monotone
we can express its inverse with an explicit integral. To derive the formula assume
that u is a strictly monotone increasing solution on an interval I (so u′ > 0 in
I) and that 0 ∈ I. Let v : u(I)→ I be the inverse of u, i.e. u ◦ v = Idu(I) and

v ◦ u = IdI . Notice that v′(s) = (u′(v(s))−1 and from the discrepancy formula

above u′(v(s)) =
√

2|ξ +W (s)|1/2. Integrating, one gets

v(s) = (
√

2/2)

∫ s

u(0)

dr

|ξ +W (r)|1/2
,

for all s ∈ u(I).
In general, we can use the integral above to define solutions. Given any

constants u(0) and ξ, the integral above has a maximum interval of definition
J which depends on the roots of the polynomial ξ +W (r). In particular, v(J)
covers the maximum interval of definition of a solution with initial condition
u(0) and u′(0) =

√
2|ξ +W (u(0))|1/2.
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Exercise 5. Show that if u is an entire solution with u′ > 0, then u(s) = 0 for
some s ∈ J and ξ = 0.

Since the equation is autonomous, we can translate the solution from the
previous exercise it in order to assume u(0) = 0. From the exercise and the
formulas above, it follows

v(s) = (
√

2/2)

∫ s

0

dr

|W (r)|1/2

=
√

2

∫ s

0

dr

1− r2

=
√

2 arctanh(s).

(3)

Since v is the inverse of u, we conclude that u(t) = tanh(t/
√

2). We just
proved:

Exercise 6. The only entire strictly monotone solution (up to translations and
reflections) is given explicitly by the formula

u(t) = tanh(t/
√

2).

3.2. Entire solutions with finite energy. If u : R → R has finite energy
E(u) =

∫
R(u′)2/2 + W (u) < +∞, it follows that

∫
R(u′)2/2 and

∫
RW (u) are

both finite. From the definition of discrepancy E(u) =
∫
R ξ + 2W (u) < +∞.

Therefore,
∫
R ξ < +∞. Since ξ is constant, it must vanish, i.e. ξ = 0.

If u′(t0) = 0 for some t0, then 0 = ξ = u′(t0)2/2 +W (u(t0)) = W (u(t0)). We
conclude u(t0) = ±1 and u′(t0) = 0. By uniqueness of ODE we conclude that
u(t) = ±1, for all t ∈ R.

If u′ is never zero, without loss of generality we can assume u′ > 0. This is
the case studied in the previous subsection, where we concluded that (up to
translations)

u(t) = tanh(t/
√

2).

This shows

Exercise 7. The only entire solutions with finite energy (up to translations
and reflections) are the constants ±1 and u(t) = tanh(t/

√
2).

3.3. Other entire solutions.

Exercise 8. Besides the finite energy solutions discussed above, the only other
entire solutions are periodic with initial conditions u(0) ∈ (−1, 1) and u′(0) = 0
(up to translations). All of these solutions have finite energy. Notice this
includes the zero solution, i.e. u(t) = 0, for all t ∈ R.

3.4. Solutions that blow up in finite time. All solutions to this equation,
including the ones that blow up in finite time, can be studied in the same fashion
as before using the integral formula. For completeness, the reader might want
to compare what happens in those cases using the phase diagram. However, in
practice finite energy solutions are the most relevant.
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3.5. Stability of the fundamental solution.

Definition 3.1. From now on we refer to ψ(t) = tanh(t/
√

2) as the fundamental
solution.

The theory of regularity for solutions to the Allen-Cahn equation is based,
among other things, on the fact that we can describe the stability properties of
the fundamental solution, i.e. the kernel of the linearized ODE: v′′ −W ′′(ψ)v.

Lemma 3.2. Let `(v) = v′′ −W ′′(ψ)v.

(1) ` is stable, i.e. for all f ∈W 1,2(R) we have −
∫
R f`(f) ≥ 0.

(2) Equality holds only for f(t) = ψ′(t), i.e. ker(`) = span〈ψ′〉.
(3) There exists γ > 0, such that for all f orthogonal to the kernel, i.e. such

that
∫
R fψ

′ = 0, we have the estimate

−
∫
R
f`(f) ≥ γ

∫
R
f2.

Proof. Proof of 1. Define ρ as f = ρψ′. Then

−
∫
R
f`(f) = −

∫
R
ρψ′`(ρψ′)

=

∫
R
ρψ′[−(ρψ′)′′ +W ′′(ψ)ρψ′]

=

∫
R
−ρψ′(ρψ′)′′ +W ′′(ψ)(ρψ′)2

=

∫
R
−ρψ′(ρ′ψ′ + ρψ′′)′ +W ′′(ψ)(ρψ′)2

=

∫
R
−ρψ′[ρ′′ψ′ + ρ′ψ′′ + ρ′ψ′′ + ρ(ψ′)′′] +W ′′(ψ)(ρψ′)2

=

∫
R
−[ρρ′′(ψ′)2 + (ρ2)′([ψ′/2]2)′]

=

∫
R
−ρρ′′(ψ′)2 + (ρ′)2[ψ′]2 + ρρ′′[ψ′]2

=

∫
R

(ρ′)2[ψ′]2

For the proof of 2 and 3, we refer the reader to [11]. �

4. Higher dimensional solutions

4.1. First Variation Formula for vector fields. The first derivative of Eε
at a function u, is giving by the linear functional v 7→ E′ε(u)(v) =

∫
M ε∇u ·

∇v + W ′(u)
ε v. A critical point u is then characterized by the condition∫

M
ε∇u · ∇v +

W ′(u)

ε
v = 0, ∀v ∈W 1,2(M).

We could also restrict ourselves to understand the first variation of the energy
only with respect to ambient vector fields. Let X be an ambient vector field
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M and ψt : M → M be the flow generated by X, i.e. d
dtψt|t=0= X. In this

case the infinitesimal variation of u at time zero, is given by du(X) = 〈∇u,X〉.
Making v = 〈∇u,X〉 in the formula above and integrating by parts we obtain

Lemma 4.1 (First variation formula for vector fields). If u solves (1), then for
every smooth ambient vector field X we have∫

M
divX ·

(
ε|∇u|2

2
+
W (u)

ε

)
=

∫
M
〈∇∇uX,∇u〉(4)

4.2. Discrepancy.

Remark. Notice ∇|∇u|= ∇∇u∇u. In fact,

∇X |∇u|2/2 = 〈∇X∇u,∇u〉 = 〈∇∇u∇u,X〉.

On the other hand

∇X |∇u|2/2 = |∇u|∇X |∇u|= |∇u|〈∇|∇u|, X〉.

Exercise 9. Show |Hessu|2−|∇|∇u||2≥ 0 at every point.

Lemma 4.2 (Bound on the discrepancy). Let Mn be a closed Riemannian
manifold with RicM > 0 and u : M → R a solution to (1). Then the discrepancy
ξ satisfies supM ξ ≤ 0 and supM ξ = 0 if and only if u ≡ ±1.

Proof. Let p ∈ M such that ξ(p) = supM ξ. At this point we must have
∇ξ(p) = 0 and ∆ξ(p) ≤ 0. By Remark 4.2 the first equation gives us:

0 = ∇ξ(p) = ∇|∇u(p)|2

2
+∇W (u(p))

= |∇u(p)|·∇|∇u(p)|+W ′(u(p))∇u(p)

(5)

In particular, |W ′(u(p))|= |∇|∇u(p)|| On the other hand, by Bochner’s formula
the second equation reads

0 ≥ ∆ξ(p)

= |Hessu|2+W ′′(u)|∇u|2+RicM (∇u,∇u)−W ′(u)2 −W ′′(u)|∇u|2

= |Hessu|2−|∇|∇u(p)||2+RicM (∇u,∇u)

≥ RicM (∇u(p),∇u(p)).

(6)

Since RicM > 0 this implies that ∇u(p) = 0. Now, if ξ(p) > 0, then
|∇u(p)|2/2 > W (u(p)) ≥ 0. In particular |∇u(p)|6= 0 and this is a contra-
diction. If ξ(p) = 0, then ∇u(p) = 0 implies W (u(p)) = 0, therefore u(p) = ±1
and by the maximum principle u ≡ ±1. �

In general, one cannot expect ξ ≤ 0. However, there are some situations
where a similar bound hold. When M = Rn entire solutions always satisfy ξ ≤ 0
and equality holds only for the canonical 1-D solution u(x) = ψ(x · v), where v
is a fixed non zero vector, and the constants ±1. Similar to what happens with
the bound for the supremum of u, one can recover the result in the limit, in a
precise way, for solutions with bounded energy as ε→ 0.
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4.3. Second Variation Formula. Remember Bochner’s formula

∆|∇u|2= 2|Hess(u)|2+2∇∆u · ∇u+ 2 Ric(∇u,∇u)

The following integrals are over the region |∇u|6= 0 f = g|∇u| and using
Bochner’s formula:

d2

dt2

∣∣∣∣
t=0

E(u+ tf) = E′′(u)(f, f)

=

∫
|∇f |2+W ′′(u)f2

=

∫
|∇(g|∇u|)|2+W ′′(u)(g|∇u|)2

=

∫
||∇u|∇g + g∇|∇u||2+[∆

|∇u|2

2
− |Hess(u)|2−Ric(∇u,∇u)]g2

=

∫
|∇u|2|∇g|2+g2|∇|∇u||2+2g|∇u|(∇g · ∇|∇u|)− g∇|∇u|2·∇g

− (|Hess(u)|2+ Ric(∇u,∇u))g2

=

∫
|∇u|2|∇g|2−(|Hess(u)|2−|∇|∇u||2+ Ric(∇u,∇u))g2

Exercise 10. Show that if Ric > 0 then there are no stable solutions. Hint:
try g = constant on the second variation formula.

5. Construction of solutions

Lemma 5.1 (Palais-Smale condition). Let M be a closed Riemannian manifold.

Consider the functional E(u) =
∫
M
|∇u|2

2 +W (u). Then, E satisfies the following
Palais-Smale type condition a long sequences bounded in L∞:

Let uk ∈W 1,2(M) be a sequence such that:

(1) supk‖uk‖L∞(M)< +∞
(2) supk E(uk) < +∞
(3) ‖E′(uk)‖= sup{|E′(uk)(φ)|: ‖φ‖W 1,2(M)= 1} → 0.

Then, there exists u ∈W 1,2(M) such that uk → u strongly in W 1,2(M) (after
perhaps passing to a subsequence). In particular, u is a solution to (1).

Proof. First, notice that (1) and (2) imply that supk‖uk‖W 1,2(M)< +∞, since∫
M |∇u|

2≤ 2E(u). By Rellich-Kondrachov’s compactness theorem, after passing

to a subsequence we can assume there is u ∈W 1,2(M) such that uk → u weakly
in W 1,2(M) and strongly in L2(M).
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To complete the statement, we only need to show that
∫
M |∇(uk − u)|2→ 0.

In the equality∫
M
|∇(uk − u)|2 = E′(uk)(uk − u)−

∫
M
∇u · ∇uk +

∫
M
|∇u|2−

∫
M
W ′(uk)(uk − u)

the first term goes to zero by (3) and supk‖uk − u‖W 1,2(M)< +∞. Second,∫
M ∇u · ∇uk →

∫
M |∇u|

2 since uk → u weakly in W 1,2(M) and strongly in

L2(M). Finally, Hölder’s inequality and (1) gives us∣∣∣∣ ∫
M
W ′(uk)(uk − u)

∣∣∣∣ ≤ sup
|s|≤‖uk‖L∞(M)

|W ′(s)|·Vol(M)1/2 · ‖uk − u‖L2(M)→ 0.

�

Exercise 11. Use the classical Mountain-Pass theorem (for example from
Ambrosetti-Rabinowitz) to show that there are always mountain pass solutions
to the equation above in closed manifolds.

6. Other fundamental properties of solutions

Let M be a closed manifold and u a solution to (1) on M .

Exercise 12. Show that |u|≤ 1. If the equality holds at one point then u = ±1.
Hint: use the maximum principle.

Exercise 13. If u is a non-trivial solution then {u = 0} 6= ∅.
Hint: Assume {u = 0} = ∅ and try the linear deformation connecting u with

sgn(u), i.e (1− t)u+ tsgn(u).

Exercise 14 (*). Show that if u(p) = 0 then Eε(u)|Bε(p)> c0 for some universal
constant c0.

Hint: Work on the rescaled metric (M, ε−2g). There, u satisfies ∆u−W ′(u) =
0. Since |u|≤ 1 you can use Schauder estimates to obtain C1,α-bounds on u.
This implies that the u must be close to zero on B1(p). Scaling back, this gives
a lower bound on the potential term of the energy

∫
Bε(p)W (u)/ε.

Exercise 15 (A positive solution with Dirichlet boundary data exists if ε is
small or if the region is large enough). Let φ be the first eigenfunction of the

Laplacian on a region Ω. Show that Eε(φ) < Eε(0) iff ε2λ1 < 1 − 1
2

∫
M φ4∫
M φ2

.

Conclude that if ε2λ1 < 1/2 then there is a positive solution to (1) with Dirichlet
boundary data on Ω.

Hint: By standard compactness methods (Rellich-Kondrachov) you can mini-

mize Eε on W 1,2
0 (Ω). The bound Eε(φ) < Eε(0) guarantees that the minimizer

u is not zero. Since |∇|u||= |∇u|, it follows that |u| is also a minimizer. Use
the maximum principle to conclude that u is non-zero in Ω.

Exercise 16 (*Uniqueness of positive solutions with Dirichlet boundary data).
Show that the solution from the previous exercise is unique.

Hint: This proof from [1], is general and it works for a wide range of semilinear
equations. Let u1 and u2 positive solutions with Dirichlet boundary data. The
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formula −W ′(ui) < ui, implies 0 < ∆ui + ui. Apply the strong maximum
principle to conclude ∂νui < 0 and that the functions u1/u2 and u2/u1 are in
L∞. Integrating by parts obtain the formula∫

Ω

(
− ∆u1

u1
+

∆u2

u2

)
(u2

2 − u2
1) =

∫
M

∣∣∣∣∇u1 +
u1

u2
∇u2

∣∣∣∣2 +

∣∣∣∣∇u2 +
u2

u1
∇u1

∣∣∣∣2 ≥ 0.

Then uniqueness, i.e. u1 = u2, follows from
∫

Ω

(
−W ′(u1)

u1
+W ′(u2)

u2

)
(u2

2−u2
1) ≥ 0.

Remark. On Ω \ {u = 0}, we can rewrite the Allen-Cahn equation as a linear
equation with good decay estimates

0 = ε2∆u−W ′(u)

= ε2∆(u− sgn(u))−W ′(u)

= ε2∆(u− sgn(u))− u3 + u

= ε2∆(u− sgn(u))− u(u2 − 1)

= ε2∆(u− sgn(u))− u(u2 − sgn(u)2)

= ε2∆(u− sgn(u))− u(u+ sgn(u))(u− sgn(u))

= ε2∆(u− sgn(u))− |u|(|u|+1)(u− sgn(u))

= ε2∆v − cv,

where v = u− sgn(u) and c = |u|(|u|+1) ≥ 0. The formula 0 = ε2∆v − cv is a
linear equation with c > 0. Exponential decay for solutions of this equation are
standard. Indeed:

Exercise 17 (*). Show that the function v = u−sgn(u) decays exponentially fast

in terms of its distance to the nodal set {u = 0}. More precisely, |v(p)|≤ Ce−σt/ε,
where t = distM (p, {u = 0}).

Hint: For the canonical 1-D solution, this follows immediately from its for-
mula. In general, you can work on a region where the function t = distM (·, {u =
0}) is smooth. Here, you can construct supersolutions to the linear oper-
ator ε2∆ − c, where c is the function above. Using functions of the form
a(e−σt/ε + e−σ(t−d)/ε) you should be able to apply the maximum principle on a
set {0 < t < d}.

Definition 6.1. We say that a function v = vε is of order o(εN) on a region Ω
if all of its derivatives and integrals on Ω decay faster than any polynomial, i.e.
‖∇kv‖Lp(Ω)= o(εm), for all m ∈ N.

Remark. By Schauder, the exponential decay extends to all the derivatives of
u− sgn(u), in particular, |∇ku|≤ Ce−σt/ε, where t = distM (p, {u = 0}). This
formula implies precise estimates for u− sgn(u) and its derivatives on regions
where t/ε > L > 0. Moreover, u − sgn(u) is o(εN) in regions where t/ε → ∞.
Estimates on regions where t/ε ≤ L, follow from blow-up arguments depending
on particular geometrical assumptions. These ideas are a central aspect of the
theory.
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Exercise 18. Let BR(0) be the n-dimensional ball of radius R > 0 in Rn. Show
that if u is the positive solution to (1) on BR(0) then u is rotationally symmetric

and 1 − Ce−R/ε ≤ u(0) < 1. Conclude that when R → ∞ then u → +1 on
compacts.

Hint: for the last claim use Schauder estimates and compactness embeddings
of Holder spaces.

7. Energy control and construction of solutions by higher
dimensional min-max

Since Eε has only two isolated global minima, it is natural to expect the
existence of a solution of mountain-pass type with Ind(u) ≤ 1. Moreover, by
the convergence theorems from Section 9, if we can control the energy of such
solutions, both from above and below, we can construct a minimal hypersurface
(perhaps with a singular set of dimension at most n−8). This was done originally
in [8] for n ≥ 3 and extended to n = 2 on [10]. In this section we discuss a
generalization of this construction which is presented in detail in [6].

Exercise 19. Show that there is a Morse function f : M → R such that the
level sets Σt = {f = t} move continuously with respect to the Hausdorff distance.

Hint: the problem is that f might have local maxima (or minima). Nonethe-
less, these are isolated points and you can transform them into global maxima
(or minima) by modifying the function just on a small neighborhood around this
points.

Let f be a Morse function as in the previous exercise. As a first step on
the construction of solutions, we use the one-parameter family of hypersurfaces
Σt = {f = t} to give an example of a higher-dimensional, odd family of functions
h : Sp →W 1,2(M) with energy bounded from above independently of ε.

For each z ∈ C, we define an associated distance function on M by

dz : M → R≥0, dz(x) = distM (x,ΣRe(z)) + distC(z, f(M)),

where f(M) = [minM f,maxM f ]. For each a = (a0, . . . , ap) ∈ Sp, consider
the polynomial Pa(z) =

∑p
i=0 aiz

i and let C(a) be the set of its roots in the
complex plane. We then define the functions

da(x) =

{
min{dz(x) : z ∈ C(a)} if C(a) 6= ∅
+∞ if C(a) = ∅

.

Finally, define

ρa(x) = sgna(x)da(x),

where sgna(x) = sgn(Pa ◦ f(x)), whenever da(x) > 0.

Exercise 20 (**). Let ψ be the canonical one-dimensional solution. Show that
a ∈ Sp → ha = ψ ◦ ρa ∈ W 1,2(M) is continuous. Moreover, h−a = −ha and
lim supε→0 supεEε(ha) = σp supt∈R|Σt|.

Hint: once we have constructed the right distance functions da, the rest of
the computations are long, but elementary. You can find them on [6].
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The topology of W 1,2(M) is trivial, but to hope to find critical points by
means of min-max methods we need first to have some interesting topology. In
this particular case, this follows from equivariant min-max methods that exploit
the Z2-symmetries of the functional Eε on W 1,2(M).

Define H = W 1,2(M) \ {0} and denote by S the unit sphere of ⊂ H. Then
H ' S × (0,+∞) is a (non-complete) smooth Hilbert manifold. We can
think of the S as a infinite dimensional sphere. More precisely, given the
natural inclusions of finite dimensional spheres S1 ⊂ S2 ⊂ S3 ⊂ · · · the infinite
dimensional sphere is defined as the set S∞ = ∪k∈NSk with the largest topology
making the inclusions continuous. Given an infinite set of linearly independent
vectors v1, v2, v3, . . . on W 1,2 (e.g. eigenvalues of the Laplacian) we can take
the unit sphere on each finite dimensional span Ek = span(v1, . . . , vk). This
gives us the inclusions S1 ⊂ S2 ⊂ · · · ⊂ S∞ ⊂ H ' S × (0,+∞).

Now, notice that the Z2-action on H given by the antipodal map u→ −u is
free. Therefore, H/Z2 is a smooth (but punctured) Hilbert manifold and we
have the inclusions

RP1 ⊂ RP2 ⊂ · · · ⊂ RP∞ ⊂ H/Z2 ' S/Z2 × (0,+∞).

It is a well-known fact that the cohomology of RP∞ (with coefficients Z2)
is a polynomial algebra Z2[γ] generated by a single non-trivial element γ of
the first cohomology group. It is the case that the cohomology group of
H/Z2 ' S/Z2× (0,+∞) has the same form. This is a more subtle assertion (see
[6] for the precise topological statements). However, the inclusions above should
at least convince you that the cohomology of H/Z2 is at least as complicated
as Z2[γ].)

Summarizing, all these arguments tell us that it should be possible to apply
min-max methods to find critical points of Eε in H/Z2 (and therefore in H) as
long as we can guarantee that our min-max families stay on a bounded set and
also away from the singular point which is the origin.

Given p ∈ N, we define the family

Fp = {A ⊂W 1,2(M) : A compact, A = −A and γp(A/Z2) 6= 0}.
Finally, we define the p-widths

cε(p) = inf
A∈Fp

sup
A
Eε.

From the inclusions F1 ⊃ F2 ⊃ F2 ⊃ · · · it follows that cε(1) ≤ cε(2) ≤ · · · is a
monotone increasing sequence.

In [6], we use that Eε has a Palais-Smale property on a suitable subset of H,
from classical min-max theory to conclude the following result:

Theorem 7.1. Fix p ∈ N. For ε small enough, there exists a non-trivial
solution u to (1) with Eε(u) = cε(p) < Eε(0) and Ind(u) ≤ p ≤ Ind(u) + Nul(u).
Moreover,

0 < lim inf
ε→0

cε(p) ≤ lim sup
ε→0

cε(p) < +∞.

Proof. Fix p ∈ N. Let h be as in the previous exercise. The existence of ε,
follows since h(Sp) ⊂ Fp, combined with the upper bound on Eε(ha) (which
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is independent of ε) and the fact that Eε(0) = ε−1Vol(M)W (0) → ∞. The
existence of u, with Eε(u) = cε(p) and Ind(u) ≤ p ≤ Ind(u)+Nul(u) follows from
the Palais-Smale condition and Ghoussoub’s min-max theorem for cohomological
families (see [7]). The same upper bound implies lim supε→0 cε(p) < +∞. You
can prove the lower bound in the following way. First, show that cε(p) > 0 (this
is easy since the only solutions with energy 0 are the constants ±1). Finally,
notice that 0 < Eε(u) < Eε(0), implies that the solution is not trivial. Then, it
has a nodal set from Exercise 13. Deduce a lower bound for Eε(u) from Exercise
14. �

8. Construction of solutions by minimization and gluing

Even for familiar geometries it is hard to determine how the min-max solutions
constructed above will look like. Because of this, sometimes it is useful to
construct solutions in other ways. In this section, we discuss how to use
Exercises 15 and 16 to construct solutions by gluing methods. Some advantages
of this approach is that we usually have a good picture for the nodal set as well
as good bounds for their energy. On the other hand, in general it is hard to
estimate the Morse index of these solutions.

Exercise 21. Construct a solution to (1) on Sn with nodal set equal to an
equator.

Hint: Use Exercise 15 to solve the Dirichlet problem on each hemisphere.
Choose the positive solution in one and the negative solution in the other. Use
Exercise 16 to conclude that both solutions are rotationally symmetric and
indeed, their gradient coincides on the equator. Conclude that the value of the
solutions, their gradient and Laplacian, coincide on the equator. Deduce from
this that when we glue both solutions we obtain a weak solution of (1) (and
therefore a smooth solution).

The following exercises deal with similar ideas in different geometries.

Exercise 22. Construct a solution to (1) on a rotationally symmetric torus
Tn whose nodal set is exactly two antipodal slices of Tn−1 (you can actually do
it for any even number of equidistant slices).

Exercise 23. Construct a solution to (1) on Sn whose nodal set is two orthog-
onal equators.

Hint: In this case the nodal set is singular. Similar ideas work for showing
that after gluing we obtain a weak solution.

Exercise 24. Construct a solution to (1) on R2 whose nodal set is two orthog-
onal lines.

Hint: First, construct a solution on a ball of radius R > 0 to the Dirichlet
problem, having nodal set two orthogonal segments of lines passing through
the origin. After this, take the limit as R → ∞ and use standard Schauder
estimates.

Exercise 25. Construct a solution to (1) on R2 whose nodal set is two orthog-
onal lines.
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Hint: First, construct a solution on a ball of radius R > 0 to the Dirichlet
problem, having nodal set two orthogonal segments of lines passing through
the origin. After this, take the limit as R → ∞ and use standard Schauder
estimates.

Exercise 26 (*). Construct a solution to (1) on Sn whose nodal set is two
parallels. More precisely, {u = 0} = Sn ∩ {xn+1 = ±s0}, for some |s0|< 1.

Hint: Define regions Aτ = Sn ∩ {|xn+1|< τ} and Sn \Aτ = D+
τ ∪D−τ , where

D±τ are the two disks forming the complement of the annulus Aτ . Glue together
the positive solutions with Dirichlet condition on D±τ and the negative solution
with Dirichlet condition on Aτ . Show that each solution satisfies an homogeneous
Neumann condition at the boundary, which varies continuously with respect to τ .
Finally, show that when ε is small enough, there exists τ ∈ [0, 1] such that the
gradients of the solutions coincide at the boundary of Aτ . This is the solution
you are looking for.

Exercise 27 (**). In the example above, you can actually prove that as ε→ 0,
the zero level set accumulates on an equator with multiplicity 2.

Hint: Show first that the solutions have finite energy. This can be done by
expressing the solution in Fermi coordinates around the nodal set and using Ex-
ercise 17. In particular by Hutchinson-Tonegawa [9], the energy will accumulate
on an stationary varifold. After passing to a subsequence, we can assume that
the zero level set converges to either two parallels or to the equator. Prove that
the energy must concentrate on this limit set (again you can use Exercise 17 for
this). Since two parallels are not stationary, it follows that it must converge to
the equator.

Exercise 28. Construct a solution to (1) on RPn whose nodal converges to a
copy of RPn−1 with multiplicity 2.

Hint: First, show that the solutions on Sn from the previous exercise are
even.

9. Connection to minimal hypersurfaces

Informally, we expect {u = 0} to converge to a minimal hypersurface Σn−1 ⊂
Mn (which is perhaps singular). Moreover, limε→0Eε(u) = σ|Σ|. There are
elementary heuristic arguments supporting such expectations (examples can be
found on [14] and math.stanford.edu/~ryzhik/BANFF/delpino.pdf). The
following are precise versions of this fact.

Theorem 9.1 (Pacard-Ritoré [13] (see also [12, 2])). Given Σ ⊂M a smooth,
separating, non-degenerate minimal hypersurface, there exists ε0 > 0, such that
for every ε ∈ (0, ε0) there is a solution u to (1) such that {u = 0} → Σ as a
smooth graph. Moreover, limε→0Eε(u) = σ|Σ| and Ind(Σ) = Ind(u).

Theorem 9.2 (Hutchinson-Tonegawa-Wickramasekera-Guaraco [8] (see also
[9, 15])). Assume there is a sequence of solutions u = uk to (1), with ε = εk → 0,
such that

sup
ε

(‖u‖L∞(Ω)+Eε(u) + Ind(u)) < +∞,(7)

math.stanford.edu/~ryzhik/BANFF/delpino.pdf
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then {u = 0} converges (with respect to the Hausdorff distance) to a minimal
hypersurface Σ, which is embedded outside of a set of dimension at most n− 8.
Moreover, if Σ1, . . . ,Σk are the connected components of Σ, then limε→0Eε(u) =
m1|Σ1|+ · · ·+mk|Σk|, for mi ∈ N.

Remark. It is possible to define an index for Σ with respect to vector fields.
This works even when it is not orientable. In this sense, P. Gaspar [5] showed
that under hypothesis (7), one has Ind(Σ) ≤ limε→0 Ind(u).

Theorem 9.3 (Chodosh-Mantoulidis [3]). Let n = 3. Assume there is a
sequence of solutions u = uk to (1), with ε = εk → 0, such that

sup
ε

(‖u‖L∞(Ω)+Eε(u) + Ind(u)) < +∞,

then, outside of a finite set, {u = 0} converges to a minimal hypersurface Σ as
a multigraph. As above, limε→0Eε(u) = m1|Σ1|+ · · ·+mk|Σk|. If mi 6= 1, then
Σi admits a positive Jacobi vector field. In particular, if Σ is non-degenerate or
RicM is positive then mi = 1, for all i = 1, . . . , k.

Remark. Let Σ be a separating hypersurface. Denote by Nul(Σ) and Nul(u),
the nullity of J and E′′ε , respectively. Chodosh-Mantoulidis [3] showed that if
mi = 1 for all i = 1, . . . , k then limε→0 Ind(u) + Nul(u) ≤ Ind(Σ) + Nul(Σ).
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